persamaan garis singgung fungsi trigonometri
Diperolehpersamaan garis singgung di titik A adalah $ y = 2x + 1 \, $ dan di titik B adalah $ y = 0 $ . Menentukan titik potong kedua garis singgung : garis singgungnya : $ y = 0 \, $ dan $ y = 2x + 1 $
CaraMenentukan Persamaan Garis Singgung Grafik Fungsi Trigonometri 1. Tentukan dahulu titik yang dilalui garis tersebut (misalnya titik (x1, x2). 2. Tentukan turunan fungsi trigonometri tersebut untuk menentukan gradien. 3. Tentukan gradien garis singgung dengan cara mensubstitusi nilai x1 fungsi
Antiribet Cobain, yuk!Teks videodisini kita ada soal tentang turunan fungsi garis G menyinggung grafik fungsi fx = Sin X kurang 2 phi per 3 per cos X per 2 kurang phi per 3 di titik berabsis x = 2 phi per 3 persamaan garis G adalah pertama kita mencari gradien dari garis G kita tulis MG = F aksen 2 per 3 kemudian kita mencari titik singgung
Download PENERAPAN TURUNAN FUNGSI TRIGONOMETRI MENENTUKAN PERSAMAAN GARIS SINGGUNG KURVA KELOMPOK 9 1. HABIB FEBRIAN 2. M. RAIHAN AKBAR 3. M. NUR ALIF 4. SILVIA AZKAL AZKYA fGradien Garis disimbolkan dengan "m" dimana : gradien pada persamaan garis adalah m gradien pada persamaan garis adalah adalah gradien jika diketahui dua titik (x1,y1
Tugasatau Latihan Soal Persaman garis singgung pada trigonometri. 1. tentukanlah persamaan garis singgung kurva y = sin 2x di titik berabsis 15 0. 2. diketahui kurva y = c o s 2 ( x + 20 0) pada interval 0 0 < x < 180 0. Tentukan persamaan garis singgung kurva yang sejajar dengan x + 2y - 1 = 0. 3. diketahui kurva y = s i n 2 ( x - 20 0
Pof Com Site De Rencontres En Ligne Gratuit.
75% found this document useful 4 votes11K views2 pagesOriginal TitleGRADIEN DAN PERSAMAAN GARIS SINGGUNG FUNGSI TRIGONOMETRICopyright© © All Rights ReservedShare this documentDid you find this document useful?75% found this document useful 4 votes11K views2 pagesGradien Dan Persamaan Garis Singgung Fungsi TrigonometriOriginal TitleGRADIEN DAN PERSAMAAN GARIS SINGGUNG FUNGSI TRIGONOMETRIJump to Page You are on page 1of 2 You're Reading a Free Preview Page 2 is not shown in this preview. Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.
0% found this document useful 0 votes6 views1 pageOriginal Titlepersamaan garis singgung turunan fungsi © All Rights ReservedAvailable FormatsDOCX, PDF, TXT or read online from ScribdShare this documentDid you find this document useful?0% found this document useful 0 votes6 views1 pagePersamaan Garis Singgung Turunan Fungsi TrigonometriOriginal Titlepersamaan garis singgung turunan fungsi to Page You are on page 1of 1Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.
Salah satu aplikasi atau pemanfaatan konsep turunan diferensial dalam matematika adalah untuk menentukan gradien dan persamaan garis singgung dari suatu kurva. Kebermanfaatan konsep tersebut tentunya dalam ranah bidang geometri. Konsep turunan dapat dipakai untuk menentukan gradien garis singgung dikarenakan adanya fakta bahwa nilai turunan suatu fungsi pada titik tertentu adalah gradien garis singgung grafik fungsi di titik tersebut. Baca Juga Soal dan Pembahasan – Aplikasi Turunan Diferensial Nah, untuk memantapkan pemahaman mengenai ini, kita sajikan soal beserta pembahasannya yang mungkin saja dapat dijadikan referensi untuk belajar. Semoga bermanfaat. Today Quote Emas lebih berharga dari kayu. Namun, saat kita akan tenggelam, kayulah yang menjadi penyelamat. Sederhananya, jangan meremehkan kemampuan orang lain. Baca Juga Soal dan Pembahasan – Turunan Fungsi Aljabar Bagian Pilihan Ganda Soal Nomor 1 Grafik fungsi $fx=x^2-4x+5$ menyinggung garis $g$ di $x = -1$. Gradien garis $g$ adalah $\cdots \cdot$ A. $-8$ C. $-2$ E. $6$ B. $-6$ D. $4$ Pembahasan Diketahui $fx=x^2-4x+5.$ Turunan pertama dari fungsi $fx$ adalah $f'x = 2x-4.$ Gradien garis singgung $g$ diperoleh saat $x = -1,$ yaitu $m = f'-1 = 2-1-4=-6.$ Jadi, gradien garis $g$ adalah $\boxed{-6}$ Jawaban B [collapse] Soal Nomor 2 Garis $k$ menyinggung grafik fungsi $gx=3x^2-x+6$ di titik $B2, 16$. Persamaan garis $k$ adalah $\cdots \cdot$ A. $y=2x-16$ B. $y=2x+16$ C. $y=11x-6$ D. $y=11x+6$ E. $y=11x+16$ Pembahasan Diketahui $gx=3x^2-x+6.$ Turunan pertama dari fungsi $gx$ adalah $g'x = 6x-1.$ Karena titik singgungnya di $\color{red}{2}, 16$, gradien garis singgung $k$ diperoleh saat $\color{red}{x = 2},$ yaitu $m = g'2 = 62-1=11.$ Persamaan garis yang bergradien $m = 11$ dan melalui titik $x_1, y_1 = 2, 16$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-16 & = 11x-2 \\ y-16 & = 11x-22 \\ y & = 11x-6 \end{aligned}$ Jadi, persamaan garis $k$ adalah $\boxed{y=11x-6}$ Jawaban C [collapse] Baca Juga Soal dan Pembahasan – Turunan Fungsi Trigonometri Soal Nomor 3 Jika garis $l$ menyinggung kurva dengan persamaan $y=x^3-5x^2+7$ di titik $1,3$, maka persamaan garis $l$ adalah $\cdots \cdot$ A. $10x+y-7=0$ B. $7x+y-10=0$ C. $7x+y-2=0$ D. $5x+y-7=0$ E. $x-y-5=0$ Pembahasan Diketahui $y=x^3-5x^2+7.$ Turunan pertama dari $y$ adalah $y’ = 3x^2-10x.$ Karena titik singgungnya di $\color{red}{1}, 3$, maka gradien garis singgung $l$ diperoleh saat $\color{red}{x = 1}$, yaitu $m = y’_{x=1} = 31^2-101 = -7.$ Persamaan garis yang bergradien $m = -7$ dan melalui titik $x_1, y_1 = 1, 3$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-3 & = -7x-1 \\ y-3 & -7x+7 \\ 7x+y-10 & = 0 \end{aligned}$ Jadi, persamaan garis $l$ adalah $\boxed{7x+y-10=0}$ Jawaban B [collapse] Soal Nomor 4 Persamaan garis singgung kurva dengan persamaan $y=x^2+1^2$ di titik dengan absis $x=1$ adalah $\cdots \cdot$ A. $y=8x+10$ B. $y=8x+8$ C. $y=8x+4$ D. $y=8x-4$ E. $y=8x-10$ Pembahasan Diketahui $y=x^2+1^2.$ Titik singgung berabsis $x = 1$ sehingga $y = 1^2+1^2 = 2^2 = 4.$ Jadi, koordinat titik singgung di $1, 4$. Turunan pertama dari $y$ dapat ditentukan dengan menggunakan aturan rantai atau bisa juga dengan dijabarkan lebih dulu, yaitu $y’ = 2x^2+1\underbrace{2x}_{y} = 4xx^2+1.$ Karena titik singgungnya berabsis $x=1$, gradien garis singgungnya diperoleh saat $x = 1$, yaitu $\begin{aligned} m & = y’_{x=1} = 411^2+1 \\& = 42 = 8. \end{aligned}$ Persamaan garis yang bergradien $m = 8$ dan melalui titik $x_1, y_1 = 1, 4$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-4 & = 8x-1 \\ y-4 & = 8x-8 \\ y & = 8x-4. \end{aligned}$ Jadi, persamaan garis singgungnya adalah $\boxed{y = 8x-4}$ Jawaban D [collapse] Soal Nomor 5 Persamaan garis singgung kurva dengan persamaan $y=x^3$ di titik $A$ yang berordinat $8$ adalah $\cdots \cdot$ A. $12x-y+16=0$ B. $x-12y+16=0$ C. $12x-y-16=0$ D. $x-12y-16=0$ E. $12x+y+16=0$ Pembahasan Diketahui $y=x^3.$ Titik singgung berordinat $y = 8$sehingga $8 = x^3 \Leftrightarrow x = 2$. Jadi, koordinat titik singgung di $2, 8.$ Turunan pertama dari $y$ adalah $y’ = 3x^2.$ Karena titik singgungnya $\color{red}{2}, 8,$ maka gradien garis singgungnya diperoleh saat $\color{red}{x = 2}$, yaitu $m = y’_{x=2} = 32^2 = 12.$ Persamaan garis yang bergradien $m = 12$ dan melalui titik $x_1, y_1 = 2, 8$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-8 & = 12x-2 \\ y-8 & = 12x-24 \\ y-12x+16 & = 0 \\ \text{Kalikan}~-1&~\text{di kedua ruas} \\ 12x-y-16 & = 0 \end{aligned}$ Jadi, persamaan garis singgungnya adalah $\boxed{12x-y-16=0}$ Jawaban C [collapse] Baca Juga Soal dan Pembahasan – Sistem Koordinat Kartesius Soal Nomor 6 Persamaan garis singgung kurva $y=x^2+2x-1$ di titik yang berordinat $2$ adalah $\cdots \cdot$ A. $4x+y-3=0$ B. $4x-y-2=0$ C. $3x-y-1=0$ D. $3x-y+1=0$ E. $x-y+1=0$ Pembahasan Diketahui $y=x^2+2x-1.$ Titik singgung berordinat $y = 2$ sehingga $\begin{aligned} x^2+2x-1 & = 2 \\ x^2+2x-3 & = 0 \\ x+3x-1 & = 0. \end{aligned}$ Diperoleh $x = -3$ atau $x=1.$ Jadi, koordinat titik singgung di $-3, 2$ dan $1, 2.$ Kemungkinan 1 TS di $-3, 2.$ Turunan pertama dari $y$ adalah $y’ = 2x+2.$ Karena titik singgungnya $\color{red}{-3}, 2$, gradien garis singgungnya diperoleh saat $\color{red}{x = -3},$ yaitu $m = y’_{x=-3} = 2-3 + 2 = -4.$ Persamaan garis yang bergradien $m = -4$ dan melalui titik $x_1, y_1 = -3, 2$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-2 & = -4x+3 \\ y-2 & = -4x-12 \\ 4x+y+10 & = 0. \end{aligned}$ Jadi, persamaan garis singgungnya adalah $\boxed{4x+y+10=0}$ Kemungkinan 2 TS di $1, 2.$ Turunan pertama dari $y$ adalah $y’ = 2x+2.$ Karena titik singgungnya $\color{red}{1}, 2,$ maka gradien garis singgungnya diperoleh saat $\color{red}{x = 1}$, yaitu $m = y’_{x=-3} = 21 + 2 = 4.$ Persamaan garis yang bergradien $m = 4$ dan melalui titik $x_1, y_1 = 1, 2$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-2 & = 4x-1 \\ y-2 & = 4x-4 \\ 4x-y-2 & = 0. \end{aligned}$ Jadi, persamaan garis singgungnya adalah $\boxed{4x-y-2=0}$ Jawaban B [collapse] Baca Juga Soal dan Pembahasan – Konsep, Sifat, dan Aturan dalam Perhitungan Turunan Dasar Soal Nomor 7 Garis singgung pada parabola $y=x^2+6\dfrac12x+14\dfrac12$ yang sejajar dengan garis $x-2y+3=0$ adalah $\cdots \cdot$ A. $x-2y-9=0$ B. $x+2y-13=0$ C. $2y+x+12=0$ D. $2y-x-11=0$ E. $2y-x-1=0$ Pembahasan Diketahui $y=x^2+6\dfrac12x+14\dfrac12.$ Turunan pertama dari $y$ adalah $y’ = 2x + 6\dfrac12.$ Garis $x-2y + 3 = 0$ memiliki gradien $m = -\dfrac{\text{Koef}.x}{\text{Koef}.y} = -\dfrac{1}{-2} = \dfrac12.$ Substitusi $y’ = \dfrac12$sehingga kita peroleh $\begin{aligned} \dfrac12 & = 2x + 6\dfrac12 \\ -6 & = 2x \\ x & = -3. \end{aligned}$ Selanjutnya, substitusi $x = -3$ pada $y.$ $\begin{aligned} y & =x^2+6\dfrac12x+14\dfrac12 \\ & = -3^2+6\dfrac12-3 + 14\dfrac12 \\ & = 9-19\dfrac12+14\dfrac12 \\ & = 9-5 = 4 \end{aligned}$ Jadi, titik singgungnya di $-3, 4.$ Persamaan garis yang bergradien $m = \dfrac12$ dan melalui titik $x_1, y_1 = -3, 4$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-4 & = \dfrac12x+3 \\ 2y-8 & = x+3 \\ 2y-x-11 & = 0 \end{aligned}$ Jadi, persamaan garis singgungnya adalah $\boxed{2y-x-11=0}$ Jawaban D [collapse] Soal Nomor 8 Garis singgung kurva $y=\dfrac13x^3+x^2$ yang tegak lurus dengan garis $x-y+3=0$ adalah $\cdots \cdot$ A. $x+y+1=0$ B. $2x+2y+1=0$ C. $3x+3y+1=0$ D. $3x+3y-1=0$ E. $3x+3y-2=0$ Pembahasan Diketahui $y = \dfrac13x^3 + x^2.$ Gradien garis $x-y+3=0$ adalah $m’ = -\dfrac{\text{Koef}.x}{\text{Koef}.y} = -\dfrac{1}{-1} = 1.$ Gradien garis yang tegak lurus dengannya adalah $m = -\dfrac{1}{m’} = -\dfrac{1}{1} = -1.$ Nilai turunan pertama dari $y = \dfrac13x^3 + x^2$ pada absis titik singgung adalah gradien garis singgungnya, yaitu $m = -1$. Dengan demikian, kita tuliskan $\begin{aligned} y’ & = x^2 + 2x \\ m = y’_{x = a} & = a^2+2a \\ -1 & = a^2+2a \\ a^2+2a+1 & = 0 \\ a+1^2 & = 0. \end{aligned}$ Diperoleh $a = -1$, artinya absis titik singgungnya adalah $x = -1.$ Sekarang substitusikan $x = -1$ pada $y.$ $\begin{aligned} y & = \dfrac13x^3 + x^2 \\ & = \dfrac13-1^3 + 1^2 \\ & = -\dfrac13 + 1 = \dfrac23 \end{aligned}$ Jadi, titik singgungnya di $\left-1, \dfrac23\right.$ Persamaan garis yang bergradien $m = -1$ dan melalui titik $\left-1, \dfrac23\right$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-\dfrac23 & = -1x+1 \\ y-\dfrac23 & = -x-1 \\ x+y+\dfrac13 & = 0 \\ \text{Kalikan 3}&~\text{di kedua ruas} \\ 3x+3y+1 & = 0. \end{aligned}$ Jadi, persamaan garis singgung tersebut dinyatakan oleh $\boxed{3x+3y+1 = 0}$ Jawaban C [collapse] Soal Nomor 9 Garis $g$ menyinggung grafik fungsi $fx=-2x^2-x+8$. Jika gradien garis singgung tersebut adalah $m = 7$, maka titik singgung antara grafik fungsi $f$ dan garis $g$ adalah $\cdots \cdot$ A. $-2,2$ D. $2,2$ B. $-2,4$ E. $2,4$ C. $0,2$ Pembahasan Diketahui $fx=-2x^2-x+8.$ Misalkan titik singgungnya di $a, b.$ Substitusi $x = a$ pada $f'x$ untuk mendapatkan gradien garis singgung diketahui di sini bahwa $m = 7$. $\begin{aligned} f'x & = -4x-1 \\ m = f'a & = -4a-1 \\ 7 & = -4a-1 \\ 8 & = -4a \\ a & = -2 \end{aligned}$ Substitusi $x = -2$ pada $fx$. $\begin{aligned} fx & = -2x^2-x+8 \\ f-2 & = -2-2^2-2+8 \\ b & = -24+10 = 2 \end{aligned}$ Jadi, titik singgung antara grafik fungsi $f$ dan garis $g$ adalah $\boxed{-2, 2}$ Jawaban A [collapse] Soal Nomor 10 Diketahui garis singgung parabola $y=4x-x^2$ di titik $A1,3$ juga merupakan garis singgung parabola $y=x^2-6x+p$. Nilai $p$ yang memenuhi adalah $\cdots \cdot$ A. $17$ C. $9$ E. $-17$ B. $15$ D. $-15$ Pembahasan Diketahui $y = 4x-x^2.$ Turunan pertamanya adalah $y’ = 4-2x.$ Gradien garis singgung di $x = 1$ adalah $m= y’_{x=1} = 4-21=2.$ Persamaan garis yang melalui titik $x_1, y_1 = 1, 3$ dan bergradien $m = 2$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-3 & = 2x-1 \\ y & = 2x+1. \end{aligned}$ Garis $y = 2x + 1$ juga menyinggung parabola $y = x^2-6x+p$ sehingga kita tuliskan $\begin{aligned} x^2-6x+p & = 2x+1 \\ x^2-8x+p-1 & = 0. \end{aligned}$ Syarat dua kurva bersinggungan adalah nilai diskriminan persamaan kuadrat tersebut nol. $\begin{aligned} D & = b^2-4ac \\ 0 & = -8^2-41p-1 \\ 0 & = 64-4p+4 \\ 4p & = 68 \\ p & = 17 \end{aligned}$ Jadi, nilai $p$ yang memenuhi adalah $\boxed{17}$ Jawaban A [collapse] Baca Juga Soal dan Pembahasan – Titik Tengah Ruas Garis dan Jarak Dua Titik Soal Nomor 11 Grafik fungsi $gx=x^3-3x^2+3x-1$ melalui titik $A3,8$. Persamaan garis singgung grafik fungsi $g$ di titik $A$ adalah $\cdots \cdot$ A. $y=3x-28$ B. $y=3x+38$ C. $y=11x-28$ D. $y=11x-38$ E. $y=11x+38$ Pembahasan Diketahui $gx=x^3-3x^2+3x-1.$ Titik singgung di $3, 8.$ Substitusi $x = 3$ pada $f'x$ untuk mendapatkan gradien garis singgung. $\begin{aligned} f'x & = 3x^2-6x+3 \\ m = f'3 & = 33^2-63+3 \\ m & = 27-18+3 = 12 \end{aligned}$ Persamaan garis yang melalui titik $x_1, y_1 = 3, 8$ dan bergradien $m = 12$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-8 & = 12x-3 \\ y-8 & = 12x-36 \\ y & = 12x-28. \end{aligned}$ Jadi, persamaan garis singgung grafik fungsi $g$ di titik $A$ adalah $\boxed{y=12x-28}$ Jawaban C [collapse] Soal Nomor 12 Persamaan garis singgung kurva $fx=\sqrt{2x+3}$ yang tegak lurus garis $3x+y-2=0$ adalah $\cdots \cdot$ A. $9x-3y+14=0$ B. $8x-24y+39=0$ C. $9x-y-6=0$ D. $3x-y-12=0$ E. $x-3y+6=0$ Pembahasan Diketahui $fx = \sqrt{2x+3}.$ Gradien garis $3x+y-2=0$ adalah $m’ = -\dfrac{\text{Koef}.x}{\text{Koef}.y} = -\dfrac{3}{1} = -3.$ Gradien garis yang tegak lurus dengannya adalah $m = -\dfrac{1}{m’} = -\dfrac{1}{-3} = \dfrac13.$ Nilai turunan pertama dari $fx$ pada absis titik singgung adalah gradien garis singgungnya, yaitu $m = \dfrac13$. Dengan demikian, kita tuliskan $$\begin{aligned} fx & = \sqrt{2x+3} = 2x+3^{1/2} \\ f'x & = \dfrac{1}{\cancel{2}}2x+3^{-1/2}\cancel{2} \\ f'x & = \dfrac{1}{\sqrt{2x+3}} \\ m = f'a & =\dfrac{1}{\sqrt{2a+3}} \\ \dfrac13 & = \dfrac{1}{\sqrt{2a+3}} \\ \sqrt{2a+3} & = 3 \\ 2a+3 & = 9 \\ 2a & = 6 \\ a & = 3. \end{aligned}$$Diperoleh $a = 3$, artinya absis titik singgungnya adalah $x = 3.$ Sekarang substitusikan $x = 3$ pada $fx.$ $\begin{aligned} fx & = \sqrt{2x+3} \\ f3 & = \sqrt{23+3} \\ & = \sqrt9 = 3 \end{aligned}$ Jadi, titik singgungnya di $3, 3.$ Persamaan garis yang bergradien $m = \dfrac13$ dan melalui titik $3,3$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-3 & = \dfrac13x-3 \\ 3y-9 & = x-3 \\ x-3y+6 & = 0 \end{aligned}$ Jadi, persamaan garis singgung tersebut dinyatakan oleh $\boxed{x-3y+6=0}$ Jawaban E [collapse] Soal Nomor 13 Persamaan garis yang melalui titik $A1,1$ dan tegak lurus dengan garis singgung kurva $fx=x^3-3x^2+3$ di titik tersebut adalah $\cdots \cdot$ A. $y+3x-4=0$ B. $y+3x-2=0$ C. $3y-x+2=0$ D. $3y-x-2=0$ E. $3y-x-4=0$ Pembahasan Diketahui $fx=x^3-3x^2+3.$ Titik singgung di $1, 1.$ Substitusi $x = 1$ pada $f'x$ untuk mendapatkan gradien garis singgung. $\begin{aligned} f'x & = 3x^2-6x \\ m’ = f'1 & = 31^2-61 \\ & = 3-6 = -3 \end{aligned}$ Garis yang tegak lurus dengannya memiliki gradien $m = -\dfrac{1}{m’} = -\dfrac{1}{-3} = \dfrac13.$ Persamaan garis yang melalui titik $x_1, y_1 = 1,1$ dan bergradien $m = \dfrac13$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-1 & = \dfrac13x-1 \\ 3y-3 & = x-1 \\ 3y-x-2 & = 0 \end{aligned}$ Jadi, persamaan garis tersebut dinyatakan oleh $\boxed{3y-x-2=0}$ Jawaban D [collapse] Soal Nomor 14 Garis $\ell$ tegak lurus garis $g$ dan melalui titik $A3,1.$ Garis $g$ menyinggung kurva $fx=2x^2-6x+4$ di titik $B1,0.$ Persamaan garis $\ell$ adalah $\cdots \cdot$ A. $2x+y=1$ B. $x+2y=1$ C. $2x-y=1$ D. $x-2y=1$ E. $2y-x=1$ Pembahasan Diketahui $fx=2x^2-6x+4.$ Titik singgung di $1, 0.$ Substitusi $x = 1$ pada $f'x$ untuk mendapatkan gradien garis singgung. $\begin{aligned} f'x & = 4x-6 \\ m’ = f'1 & = 41-6 = -2 \end{aligned}$ Garis yang tegak lurus dengannya memiliki gradien $m = -\dfrac{1}{-2} = \dfrac{1}{2}.$ Persamaan garis yang melalui titik $x_1, y_1 = 3,1$ dan bergradien $m = \dfrac12$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-1 & = \dfrac12x-3 \\ 2y-2 & = x-3 \\ x-2y & = 1. \end{aligned}$ Jadi, persamaan garis $\ell$ dinyatakan oleh $\boxed{x-2y=1}$ Jawaban D [collapse] Baca Juga Materi, Soal, dan Pembahasan – Fungsi Naik dan Fungsi Turun Soal Nomor 15 Persamaan garis normal kurva $fx=3x^3-3x+2$ di $x=1$ adalah $\cdots \cdot$ A. $x-6y=13$ B. $x+6y=13$ C. $y-6x=13$ D. $6y-x=13$ E. $6x+y=13$ Pembahasan Diketahui $fx=3x^3-3x+2.$ Substitusi $x = 1$ untuk mencari ordinat titik singgungnya. $\begin{aligned} f1 & = 31^3-31+2 \\ & = 3-3+2 = 2 \end{aligned}$ Jadi, titik singgungnya di $1, 2.$ Nilai turunan $fx$ di $x = 1$ adalah gradien garis singgungnya. $\begin{aligned} f'x & = 33x^2-3 \\ & = 9x^2-3 \\ m’ = f'1 & = 91^2-3 = 6 \end{aligned}$ Garis normal adalah garis yang tegak lurus terhadap garis singgung sehingga gradiennya adalah $m = -\dfrac{1}{m’} = -\dfrac16.$ Persamaan garis yang melalui titik $x_1, y_1 = 1, 2$ dan bergradien $m = -\dfrac16$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-2 & = -\dfrac16x-1 \\ 6y-2 & = -x-1 \\ 6y-12 & = -x+1 \\ x+6y & = 13. \end{aligned}$ Jadi, persamaan garis normalnya dinyatakan oleh $\boxed{x+6y=13}$ Jawaban B [collapse] Soal Nomor 16 Persamaan garis normal kurva $fx=-2x^3+6x^2$ di titik $P$ adalah $6y+x=25.$ Koordinat titik $P$ adalah $\cdots \cdot$ A. $-1,2$ D. $1,4$ B. $-1,4$ E. $2,1$ C. $1,2$ Pembahasan Diketahui $fx=-2x^3+6x^2.$ Gradien garis normal $6y+x=25$ adalah $m’ = -\dfrac{\text{Koef}.x}{\text{Koef}.y} = -\dfrac{1}{6}.$ Garis singgung adalah garis yang tegak lurus garis normalsehingga gradien garis singgung adalah $m = -\dfrac{1}{m’} = 6.$ Misalkan titik singgung di $Pa, b.$ Substitusi $x = a$ pada $f'x$ untuk mendapatkan gradien garis singgung diketahui di sini bahwa $m = 6$. $\begin{aligned} fx & = -2x^3+6x^2 \\ f'x & = -6x^2+12x \\ m = f'a & = -6a^2+12a \\ 6 & = -6a^2+12a \\ 6a^2-12a+6 & = 0 \\ \text{Kedua ruas dibagi}~&6 \\ a^2-2a+1 & = 0 \\ a-1^2 & = 0 \end{aligned}$ Diperoleh $a = 1.$ Substitusi $x = 1$ pada $fx.$ $\begin{aligned} fx & = -2x^3+6x^2 \\ f1 & = -21^3 + 61^2 \\ b & = -2+6 = 4 \end{aligned}$ Jadi, koordinat titik $P$ adalah $\boxed{1, 4}$ Jawaban D [collapse] Soal Nomor 17 Persamaan garis singgung pada kurva $y = \tan x$ di titik $\left\dfrac{\pi}{4}, 1\right$ adalah $\cdots \cdot$ A. $y = 2x + \left1+\dfrac{\pi}{2}\right$ B. $y = 2x + \left\dfrac{\pi}{2}-1\right$ C. $y = 2x + \left1-\dfrac{\pi}{2}\right$ D. $y = 2x + 2-\pi$ E. $y = 2x + 2+\pi$ Pembahasan Diketahui $y = \tan x$ dan titik singgungnya $\left\dfrac{\pi}{4}, 1\right.$ Pertama, akan dicari turunan dari $y$, yaitu $y’ = \sec^2 x.$ Substitusi $x = \dfrac{\pi}{4}$ pada $y’$ sehingga kita peroleh gradien garis singgungnya, yakni $m = \sec^2 \dfrac{\pi}{4} = \sqrt2^2 = 2.$ Persamaan garis singgung yang melalui titik $x_1, y_1 = \left\dfrac{\pi}{4}, 1\right$ dan bergradien $m = 2$ adalah $\begin{aligned} y & = mx-x_1+y_1 \\ & = 2\leftx-\dfrac{\pi}{4}\right+1 \\ & = 2x-\dfrac{\pi}{2}+1 \\ & = 2x + \left1-\dfrac{\pi}{2}\right. \end{aligned}$ Jadi, persamaan garis singgung kurva di titik tersebut adalah $\boxed{y = 2x + \left1-\dfrac{\pi}{2}\right}$ Grafiknya dapat dilihat pada gambar berikut. Jawaban C [collapse] Soal Nomor 18 Persamaan garis singgung yang melalui kurva $y = \sin x + \cos x$ di titik yang berabsis $\dfrac{\pi}{2}$ akan memotong sumbu-$Y$ dengan ordinatnya adalah $\cdots \cdot$ A. $-\dfrac{\pi}{2} + 1$ D. $\dfrac{\pi}{2}$ B. $-\dfrac{\pi}{2}$ E. $\dfrac{\pi}{2} + 1$ C. $-\dfrac{\pi}{2}- 1$ Pembahasan Diketahui $y = \sin x + \cos x.$ Substitusi $x = \dfrac{\pi}{2}$ untuk memperoleh $y = \sin \dfrac{\pi}{2} + \cos \dfrac{\pi}{2}= 1 + 0 = 1.$ Titik singgungnya di $\left\dfrac{\pi}{2}, 1\right.$ Turunan dari $y$ adalah $y’ = \cos x-\sin x.$ Gradien garis singgung $m$ adalah nilai $y’$ saat $x = \dfrac{\pi}{2}$, yakni $\begin{aligned} y’ = m & = \cos \dfrac{\pi}{2}-\sin \dfrac{\pi}{2} \\ & = 0-1 = -1. \end{aligned}$ Persamaan garis yang melalui titik $x_1, y_1 = \left\dfrac{\pi}{2}, 1\right$ dan bergradien $m = -1$ adalah $\boxed{\begin{aligned} y-y_1 & = mx-x_1 \\ y-1 & = -1\leftx-\dfrac{\pi}{2}\right \\ y & = -x + \dfrac{\pi}{2} + 1. \end{aligned}}$ Garis ini memotong sumbu-$Y$ saat nilai $x = 0$ sehingga didapat $\boxed{y = 0 + \dfrac{\pi}{2} + 1 = \dfrac{\pi}{2} + 1}$ Grafiknya dapat dilihat pada gambar berikut. Jawaban E [collapse] Bagian Uraian Soal Nomor 1 Carilah gradien garis singgung pada kurva dengan persamaan $y = 3x^3-6x^2+8x+10$ pada $x=2.$ Pembahasan Gradien garis singgung pada kurva dengan persamaan $y = 3x^3-6x^2+8x+10$ pada $x=2$ adalah $\dfrac{\text{d}y}{\text{d}x}_{x = 2}.$ Turunan pertama diberikan oleh $$\dfrac{\text{d}y}{\text{d}x} = 9x^2-12x+8$$Dengan demikian, $\begin{aligned} m & = \dfrac{\text{d}y}{\text{d}x}_{x = 2} \\ & = 92^2-122+8 \\ & = 36-24+8 = 20. \end{aligned}$ Jadi, gradien garis singgungnya adalah $\boxed{20}$ [collapse] Soal Nomor 2 Grafik fungsi $fx=-x^3+3x^2-4x+5$ melalui titik $A3,-7$. Tentukan persamaan garis singgung grafik fungsi $f$ di titik $A$. Pembahasan Diketahui $fx=-x^3+3x^2-$ $4x+5.$ Titik singgung di $3, -7.$ Substitusi $x = 3$ pada $f'x$ untuk memperoleh gradien garis singgungnya. $\begin{aligned} f'x & = -3x^2+6x-4 \\ m = f'3 & = -33^2 + 63-4 \\ & = -27+18-4 = -13 \end{aligned}$ Persamaan garis yang melalui $x_1, y_1 = 3, -7$ dan bergradien $m = -13$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-7 & = -13x-3 \\ y+7 & = -13x+39 \\ y & = -13x+32. \end{aligned}$ Jadi, persamaan garis singgungnya adalah $\boxed{y=-13x+32}$ [collapse] Baca Juga Pembuktian Turunan Fungsi Trigonometri Dasar Soal Nomor 3 Titik $P2,4$ terletak pada kurva $fx=ax^2+bx+2.$ Jika garis singgung kurva di titik $P$ sejajar dengan garis $y = 5x-6,$ tentukan nilai $a$ dan $b.$ Pembahasan Diketahui $fx=ax^2+bx+2$ dan $P2, 4$ terletak pada kurva $fx.$ Substitusi $x = 2$ pada $fx$. $\begin{aligned} f2 & = a2^2+b2+2 \\ 4 & = 4a+2b+2 \\ 2 & = 4a+2b \\ 1 & = 2a+b && \cdots 1 \end{aligned}$ Gradien garis $y = 5x-6$ adalah $m’ = 5$. Karena sejajar dengan garis singgung, gradien garis singgungnya adalah $m = m’ = 5.$ Substitusi $x = 2$ pada $f'x$ untuk memperoleh gradien garis singgung. $\begin{aligned} fx & = ax^2+bx+2 \\ f'x & = 2ax + b \\ m = f'2 & = 2a2 + b \\ 5 & = 4a + b && \cdots 2 \end{aligned}$ Dari persamaan $1$ dan $2$, diperoleh $\boxed{a = 2}$ dan $\boxed{b = -3}$ [collapse] Soal Nomor 4 Titik $A1, a+2$ terletak pada kurva $fx=ax^2-a+1x+6.$ Tentukan persamaan garis normal kurva di titik $A$. Pembahasan Diketahui $fx=ax^2-a+1x+6$ dan titik $A1, a+2$ terletak pada kurva $fx.$ Substitusi $x = 1$ pada $fx$. $\begin{aligned} f1 & = a1^2-a+11 + 6 \\ a+2 & = a-a+1+6 \\ a+2 & = 5 \\ a & = 3 \end{aligned}$ Dengan demikian, $fx = 3x^2-4x +6$ dan $A1, 5.$ Substitusi $x = 1$ pada $f'x$ untuk mendapatkan gradien garis singgung di $A$. $\begin{aligned} f'x & = 6x-4 \\ m’ = f'1 & = 61-4 \\ m’ & = 2 \end{aligned}$ Garis normal adalah garis yang tegak lurus dengan garis singgung sehingga gradiennya adalah $m = -\dfrac{1}{m’} = -\dfrac12.$ Persamaan garis yang melalui titik $x_1, y_1 = 1, 5$ dan bergradien $m = -\dfrac12$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-5 & = -\dfrac12x-1 \\ 2y-10 & = -x+1 \\ x+2y & = 11. \end{aligned}$ Jadi, persamaan garis normal di titik $A$ adalah $\boxed{x+2y=11}$ [collapse] Soal Nomor 5 Tentukan persamaan garis singgung pada kurva fungsi trigonometri di bawah ini di titik yang diberikan. $fx = \sin x$ di titik dengan absis $x = \dfrac{\pi}{6}.$ $fx = \cot x-2 \csc x$ di titik dengan absis $x = \dfrac{\pi}{3}.$ Pembahasan Jawaban a Untuk $x = \dfrac{\pi}{6},$ diperoleh $f\left\dfrac{\pi}{6}\right = \sin \dfrac{\pi}{6} = \dfrac12.$ Titik singgung di $\left\dfrac{\pi}{6}, \dfrac12\right.$ Turunan pertama fungsi $fx= \sin x$ adalah $f'x = \cos x.$ Gradien garis singgungnya adalah nilai fungsi $f’$ saat $x = \dfrac{\pi}{6}$, yaitu $m = f’\left\dfrac{\pi}{6}\right = \cos \dfrac{\pi}{6} = \dfrac12\sqrt3.$ Persamaan garis singgung kurva yang melalui titik $x_1, y_1 = \left\dfrac{\pi}{6}, \dfrac12\right$ dan bergradien $m = \dfrac12\sqrt3$ adalah $\begin{aligned} y & = mx-x_1+y_1 \\ y & = \dfrac12\sqrt3\leftx-\dfrac{\pi}{6}\right + \dfrac12 \\ 2y & = \sqrt3\leftx-\dfrac{\pi}{6}\right +1 \end{aligned}$ Jadi, persamaan garis singgungnya dinyatakan oleh $\boxed{2y = \sqrt3\leftx-\dfrac{\pi}{6}\right +1}$ Jawaban b Untuk $x = \dfrac{\pi}{3}$, diperoleh $\begin{aligned} f\left\dfrac{\pi}{3}\right & = \cot \dfrac{\pi}{3}-2 csc \dfrac{\pi}{3} \\ & = \dfrac{\sqrt3}{3}-2 \cdot \dfrac23\sqrt3 \\ & = 1-4\dfrac{\sqrt3}{3} = -\sqrt3 \end{aligned}$ Titik singgung di $\left\dfrac{\pi}{3}, -\sqrt3\right.$ Turunan pertama fungsi $fx= \cot x-2 \csc x$ adalah $\begin{aligned}vf'x & = -\csc^2 x-2-\csc x \cot x \\ & = 2 \csc x \cot x-\csc^2 x \end{aligned}$ Gradien garis singgungnya adalah nilai fungsi $f’$ saat $x = \dfrac{\pi}{3}$, yaitu $\begin{aligned} m & = f’\left\dfrac{\pi}{3}\right \\ & = 2 \csc \dfrac{\pi}{3} \cot \dfrac{\pi}{3} -\csc^2 \dfrac{\pi}{3} \\ & = 2 \cdot \dfrac23\sqrt3 \cdot \dfrac13\sqrt3-\left\dfrac23\sqrt3\right^2 \\ & = \dfrac43-\dfrac{4}{9}3 = 0 \end{aligned}$ Persamaan garis singgung kurva yang melalui titik $x_1, y_1 = \left\dfrac{\pi}{3}, -\sqrt3\right$ dan bergradien $m = 0$ adalah $\begin{aligned} y & = mx-x_1+y_1 \\ y & = 0\leftx-\dfrac{\pi}{6}\right + -\sqrt3 \\ y & = -\sqrt3 \end{aligned}$ [collapse] Baca Juga Materi, Soal, dan Pembahasan – Turunan Fungsi Implisit Soal Nomor 6 Tentukan persamaan garis normal pada kurva fungsi trigonometri di bawah ini di titik yang diberikan. $h\theta = \theta + \sin \theta$ di titik yang berordinat $0.$ $fx = x \cos x$ di titik yang berabsis $x = \dfrac{\pi}{3}.$ Pembahasan Jawaban a Diketahui $h\theta = \theta + \sin \theta.$ Untuk $y = 0$, diperoleh $0 = \theta + \sin \theta$ sehingga haruslah $\theta = 0.$ Titik singgung di $0, 0.$ Turunan pertama fungsi $f\theta= \theta + \sin \theta$ adalah $f'\theta = 1 + \cos \theta.$ Gradien garis singgungnya adalah nilai fungsi $f’$ saat $\theta = 0,$ yaitu $m = f'0 = 1 + \cos 0 = 2.$ Garis normal adalah garis yang tegak lurus dengan garis singgung dan melalui titik singgungnya. Untuk itu, kita peroleh gradien garis normalnya $m_n = -\dfrac{1}{m} = -\dfrac12.$ Persamaan garis normal kurva yang melalui titik $x_1, y_1 = 0, 0$ dan bergradien $m_n = -\dfrac12$ adalah $\begin{aligned} y & = m_nx-x_1+y_1 \\ y & = -\dfrac12x-0 + 0 \\ y & = -\dfrac12x. \end{aligned}$ Jadi, persamaan garis normalnya dinyatakan oleh $\boxed{y = -\dfrac12x}$ Jawaban b Diketahui $fx = x \cos x.$ Untuk $x = \dfrac{\pi}{3},$ diperoleh $\begin{aligned} f\left\dfrac{\pi}{3}\right & = \dfrac{\pi}{3} \cos \dfrac{\pi}{3} \\ & = \dfrac{\pi}{3} \cdot \dfrac12 \\ & = \dfrac{\pi}{6} \end{aligned}$ Titik singgung di $\left\dfrac{\pi}{3}, \dfrac{\pi}{6}\right.$ Turunan pertama fungsi $fx = x \cos x$ adalah $f'x = \cos x-x \sin x.$ Gradien garis singgungnya adalah nilai fungsi $f’$ saat $x= \dfrac{\pi}{3}$, yaitu $\begin{aligned} m & = f’\left\dfrac{\pi}{3}\right \\ & = \cos \dfrac{\pi}{3}-\dfrac{\pi}{3} \sin \dfrac{\pi}{3} \\ & = \dfrac12-\dfrac{\pi}{3} \cdot \dfrac12\sqrt3 \\ & = \dfrac12-\dfrac{\sqrt3}{6}\pi \\ & = \dfrac{3-\sqrt3\pi}{6}. \end{aligned}$ Garis normal adalah garis yang tegak lurus dengan garis singgung dan melalui titik singgungnya. Untuk itu, kita peroleh gradien garis normalnya, yakni $m_n = -\dfrac{1}{m} = \dfrac{6}{\sqrt3\pi-3}.$ Persamaan garis normal kurva yang melalui titik $x_1, y_1 = \left\dfrac{\pi}{3}, \dfrac{\pi}{6}\right$ dan bergradien $m_n = \dfrac{6}{\sqrt3\pi-3}$ adalah $\begin{aligned} y & = m_nx-x_1+y_1 \\ y & = \dfrac{6}{\sqrt3\pi-3}\leftx-\dfrac{\pi}{3}\right + \dfrac{\pi}{6}. \end{aligned}$ Jadi, persamaan garis normalnya dinyatakan oleh $\boxed{y = \dfrac{6}{\sqrt3\pi-3}\leftx-\dfrac{\pi}{3}\right + \dfrac{\pi}{6}}$ [collapse]
Dalam kesempatan ini akan kita bahas tentang cara menentukan persamaan garis singgung fungsi trigonometri pada titik yang melalui grafik tersebut. Dengan menggunakan turunan fungsi kita akan menentukan persamaan garis sinffung fungsi trigonometri. Langkah-langkah menentukan garis singgung fungsi trigonometri sebagai berikut. 1. Tentukan dahulu titik yang dilalui garis tersebut misalnya titik x1, x2. 2. Tentukan turunan fungsi trigonometri tersebut untuk menentukan gradien. 3. Tentukan gradien garis singgung dengan cara mensubstitusi nilai x1 fungsi turunannya, m = f'x1. 4. Menentukan persamaan garis singgung menggunakan rumus dasar y – y1 = mx – x1 . Bagaimana cara menentukan persamaan garis singgung fungsi trigonometri? Perhatikan contoh berikut. Contoh1 Tentukan persamaan garis singgung fungsi y = 3 sin x di titik x = 0. Jawaban Diketahui persamaan fungsi kurva adalah y = 3 sin x. Langkah 1 Menentukan titik Koordinat Sebagai titik singgung Untuk x = 0, maka y = 3 sin 0 = 3 x 0 = 0. Sehingga diperoleh koordinat 0, 0. Langkah 2 Menentukan Gradien di titik Koordinat tersebut y = 3 sin x y' = 3 cos x Gradien garis di titik 0, 0 m = f'0 = 3 cos 0 = 3 × 1 = 3 Langkah 3 Menentukan Persamaan garis singgung Persamaan garis singgung di titik 0, 0 dan bergradienm = 3. y – y1 = mx – x1 y – 0 = 3x – 0 y = 3x Jadi, persamaan garis singgung adalah y = 3x. Gambar Contoh 2 Tentukan persamaan garis singgung fungsi y = 2 sin x + cos x, di titik x = 0. Jawaban Diketahui persamaan fungsi kurva adalah y = 2 sin x + cos x. Langkah 1 Menentukan titik Koordinat Sebagai titik singgung Untuk x = 0, maka y = 2 sin 0 + cos 0 = 2 × 0 + 1 = 1. Sehingga diperoleh koordinat 0, 1. Langkah 2 Menentukan Gradien di titik Koordinat tersebut y = 2 sin x + cos x y' = 2 cos x - sin x Gradien garis di titik 0, 0 m = f'0 = 2 cos 0 - sin 0 = 2 × 1 – 0 = 2 Langkah 3 Menentukan Persamaan garis singgung Persamaan garis singgung di titik 0, 1 dan bergradienm = 2. y – y1 = mx – x1 y – 1 = 2x – 0 y – 1 = 2x y = 2x + 1 Jadi, persamaan garis singgung adalah y = 2x + 1. Gambar Demikianlah sekilas materi tentang cara menentukan persamaan garis singgung pada kurva atau grafik fungsi Trigonometri. Semoga Bermanfaat.
persamaan garis singgung fungsi trigonometri